Equi-intensity distribution of optical reflectance in a fibrous turbid medium.

نویسندگان

  • Ali Shuaib
  • Gang Yao
چکیده

Light propagation in a fibrous anisotropic scattering medium is quite different from that in an isotropic medium. Both the anisotropic diffuse equation (ADE) and the continuous time random walk (CTRW) theory predict that the equi-intensity profiles of the surface reflectance have an elliptical shape in a fibrous turbid medium. In this study, we simulated the spatially resolved surface reflectance in a fibrous sample using a Monte Carlo model. A parametric equation was used to quantitatively characterize the geometric profiles of the reflectance patterns. The results indicated that the equi-intensity profiles of surface reflectance had elliptical shapes only when evaluated at distances far away from the incident point. The length ratio of the two orthogonal axes of the ellipse was not affected by the sample optical properties when the ratio of reduced scattering coefficients along the two axes is the same. But the relationship between the aforementioned two ratios was different from the predication of ADE theory. Only for fibers of small sizes did the fitted axes ratios approach the values predicted from the ADE theory.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extension of the Stokes equation for layered constructions to fluorescent turbid media.

Expressions relating the bispectral reflectance of a stack of n fluorescing layers to each individual layer's reflectance and transmittance are derived. This theoretical framework is used together with recently proposed extensions of the Kubelka-Munk model to study the fluorescence from layered turbid media. For one layer over a reflecting background, the model is shown to give the same results...

متن کامل

Modeling diffuse reflectance from homogeneous semi-infinite turbid media for biological tissue applications: a Monte Carlo study

Diffuse reflectance spectroscopy is one of the simplest and widely used techniques for the non-invasive study of biological tissues but no exact analytical solution exists for the problem of diffuse reflectance from turbid media such as biological tissues. In this work, a general treatment of the problem of diffuse reflectance from a homogeneous semi-infinite turbid medium is presented using Mo...

متن کامل

Measurement of the reduced scattering coefficient of turbid media using single fiber reflectance spectroscopy: fiber diameter and phase function dependence

This paper presents a relationship between the intensity collected by a single fiber reflectance device (R(SF)) and the fiber diameter (d(fib)) and the reduced scattering coefficient ( μs') and phase function (p(θ)) of a turbid medium. Monte Carlo simulations are used to identify and model a relationship between R(SF) and dimensionless scattering ( μs'dfib). For μs'dfib > 10 we find that R(SF) ...

متن کامل

Hybrid model of Monte Carlo simulation and diffusion theory for light reflectance by turbid media.

Light reflectance by semi-infinite turbid media is modeled by a hybrid of Monte Carlo simulation and diffusion theory, which combines the accuracy of Monte Carlo simulation near the source and the speed of diffusion theory distant from the source. For example, when the turbid medium has the following optical properties--absorption coefficient 1 cm-1, scattering coefficient 100 cm-1, anisotropy ...

متن کامل

Radiative characterization of random fibrous media with long cylindrical fibers: Comparison of single- and multi-RTE approaches

Radiative heat transfer is analyzed in participating media consisting of long cylindrical fibers with a diameter in the limit of geometrical optics. The absorption and scattering coefficients and the scattering phase function of the medium are determined based on the discrete-level medium geometry and optical properties of individual fibers. The fibers are assumed to be randomly oriented and po...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Applied optics

دوره 49 5  شماره 

صفحات  -

تاریخ انتشار 2010